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Abstract— The foundational capabilities of humanoid robots
should include robustly standing, walking, and mimicry of
whole and partial-body motions. This work introduces the
Masked Humanoid Controller (MHC), which supports all of
these capabilities by tracking target trajectories over selected
subsets of humanoid state variables while ensuring balance
and robustness against disturbances. The MHC is trained in
simulation using a carefully designed curriculum that imitates
partially masked motions from a library of behaviors spanning
standing, walking, optimized reference trajectories, re-targeted
video clips, and human motion capture data. It also allows
for combining joystick-based control with partial-body motion
mimicry. We showcase simulation experiments validating the
MHC’s ability to execute a wide variety of behaviors from
partially-specified target motions. Moreover, we demonstrate
sim-to-real transfer on the real-world Digit V3 humanoid robot.
To our knowledge, this is the first instance of a learned
controller that can realize whole-body control of a real-world
humanoid for such diverse multi-modal targets.

Index Terms— Whole-Body Motion Planning and Control;
Humanoid and Bipedal Locomotion

I. INTRODUCTION

Humanoid robots hold immense potential as highly capa-
ble and adaptive platforms for tackling complex real-world
tasks, thanks to their dexterous multi-purpose body structure
that mirrors our own. However, development of versatile
and robust whole-body controllers for bipedal humanoids re-
mains a critical challenge in robotics. Traditional approaches
involve meticulous manual engineering of separate con-
trollers for different skills such as standing [1], walking [2],
manipulation [3] and mimicry [4], resulting in specialized
controllers with limited versatility and adaptability.

A truly versatile whole-body humanoid controller should
exhibit several key properties. First, it should be able to
robustly stand, walk, and mimic whole and partial-body
motions. Second, it should comprehend and execute these
capabilities through multiple input modalities, including
combinations of high-level velocity commands, end-effector
targets, video demonstrations, or motion capture data. Third,
the controller should be robust to dynamic command updates,
noisy or inexact inputs, inaccurate simulation parameters,
and external disturbances. Finally, the controller should allow
for straightforward extension of its repertoire as new motion
examples become available, with no or minimal retraining.
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To address these challenges, we train the Masked Hu-
manoid Controller (MHC), a whole-body controller that
is capable of accommodating target behaviors specified
as future trajectories over full or partial robot poses and
commands. This allows the MHC to support the above
multi-modality property, for example, following walking
trajectories specified solely by desired velocities and torso
orientations while masking the desired pose entirely, or
imitating arm-only motions extracted from video clips for the
upper body while following a velocity command to control
locomotion. We train the MHC via reinforcement learning
using a carefully designed curriculum and an expansive li-
brary of behaviors spanning optimized reference trajectories,
re-targeted video clips, and human motion capture data. The
tailored curriculum over motion commands and disturbances
gradually introduces capabilities with the aim of achieving
the above desired robustness and versatility properties.

We validate the MHC through simulated benchmarking
and showcase qualitative and quantitative results for sim-
to-real transfer using the Digit V3 robot platform. The
simulation experiments demonstrate the importance of the
curriculum, architecture choices and generalization to new
motions. Our real-world experiments demonstrate the robust-
ness of the MHC across a variety of target behaviors such
as walking, boxing, and box loco-manipulation, while also
highlighting current shortcomings in sim-to-real transfer. To
our knowledge, this is the first learning-based framework for
whole-body real-world humanoid control that can tractably
accommodate such a wide spectrum of multi-modal motion
directives within a single unified controller.

II. RELATED WORK

Motion Tracking for Simulated Humanoids. Motion
capture data have been used extensively for generating
motions of simulated characters. Most closely related to
our work is the application of reinforcement learning with
tracking rewards over fully specified target motions [5], [6],
[7], [8], [9], [10], [11]. However, tracking rewards alone do
not always yield smooth transitions between skills and failure
recovery. Recent works augment training with adversarial
losses to encourage natural motions during transitions [11],
[12] or define an explicit fail state recovery policy [7]. While
some approaches offer more intuitive control for under-
specified tasks, they often focus on predefined types of input
trajectory sparsity, and adapting to new sparsity specifica-
tions, such as VR, require retraining [13], [14]. Notably,
existing models designed for physically realistic animation



Fig. 1: The Masked Humanoid Controller (MHC) is learned from a dataset of re-targeted human motions paired with torso locomotion commands, including
standing. During training and testing, masking can be applied to target motion trajectories to yield masked motion directives that are given to the MHC.
The MHC then produces PD setpoints for the whole body in order to track the current motion directive. Training includes domain randomization and force
perturbations to facilitate robustness and transfer from simulation to the real robot.

using the SMPL skeleton in IsaacSIM, such as PHC [7], and
ASE [11], require substantial engineering effort and fine-
tuning to adapt to a real humanoid in the MuJoCo setup with
dynamics randomization. Moreover, discrepancies between
simulated and physical environments—such as differences
in environmental physics and unrealistic joint definitions in
simulated characters—can result in behaviors that are not
physically plausible or efficient for actual robots. Our work
aims to incorporate a wide variety of sparsity types in a
single controller and address the simulation to reality gap.

Robust Locomotion Control. Standing, walking, and
transitioning from one to the other present distinct challenges
in stability and adaptability, driving recent advances in adap-
tive control strategies that enable robots to navigate com-
plex terrains and perform dynamic maneuvers. Significant
progress has been made in the locomotion of quadrupeds,
demonstrating enhanced stability [15] [16] and agility [17]
in various environments. [18] train a unified whole body
manipulation and locomotion controller that attaches an arm
on top of a quadraped to perform mobile manipulation tasks.
Notable achievements for bipedal locomotion with the Cassie
platform (no upper torso or arms) include blind locomotion
across multiple gaits and behaviors [19], [20], locomotion
under varying loads [21], and visually-guided locomotion
over irregular terrain using deep learning to process vi-
sual input and adapt locomotion strategies accordingly [22].
More recently a learned controller for blind locomotion
on the full-body humanoid Digit was demonstrated across
varying terrain and disturbances [23]. These advancements
underscore the importance of robust data and simulation
technologies in developing and refining control strategies.
However, managing transitions between different modes of
locomotion, such as standing and walking, remained a sig-

nificant challenge. Van Marum et al. [24] addressed this
complexity with the development of the SaW controller
for Digit, which integrates stability and adaptive walking
strategies into a single operational framework that maintains
balance against natural disturbances. However, standing and
walking alone do not constitute whole-body control.

Mimicry for Humanoids. Efforts to closely replicate hu-
man motion and interaction within robotic frameworks have
been significantly enhanced by both simulation techniques
and biological inspirations. Early works by Dariush et al. [25]
and recent advancements by Li et al. [26] have advanced the
field of humanoid motion tracking for locomotion, emphasiz-
ing the utilization of optimized trajectories and multi-stage
training setups to facilitate transfer from simulation to the
real world. In concurrent work, He et al. [4] have developed
a controller trained on the AMASS dataset [27] to learn
through mimicry, another key modality of control. While this
approach effectively performs whole-body control, it only
covers the range of locomotion capabilities present in the
dataset. As a result, the system’s performance is constrained
by the locomotion patterns and upper body limitations ob-
served in the mimicry data. They do not demonstrate robust
joystick-style locomotion capabilities that are required for
loco-manipulation tasks.

Upper-Body Motion Tracking. Recent research by Cheng
et al. [28] covers the modality of partial-body control by
performing upper-body mimicry from target motions and joy-
stick based lower body control. It cannot however handle the
modalities of standing or whole-body mimicry. It performs
a continuous step-in-place motion when commanded for 0
velocity and lacks the height control beyond the region of
its nominal height. These are properties that are crucial for
whole-body mimicry when considering lower body. It also



necessitates the need for commanding a motion for upper-
body even while performing simple locomotion tasks. An
unconstrained locomotion controller would be able to learn
optimal arm swing motions that are speed-dependent and
perform better under disturbances as the arms would have
more mobility when left unconstrained.

The vast majority of the above approaches focus on a
single input modality, such as walking, standing, partial-body
mimicry, or whole-body mimicry. In order to jointly handle
all these input modalities, these approaches would need to
either switch between controllers or have an interpreter that
can generate a whole-body motion for different speeds and
optimal arm positions for the commanded speed on the
fly. This can result in significant added complexity. Our
MHC provides a simple approach which integrates these
components into a single unified framework. It enables
locomotion and comprehensive whole-body motion tracking
in humanoids, facilitating natural and adaptable motion gen-
eration that a user can control based on the scenario at hand
with no overhead of policy switching or complex interpreters.

III. PROBLEM FORMULATION

Given a dataset of humanoid motions from various be-
haviors, our objective is to learn a controller which can
match target motion directives that are representative of the
data distribution. We are particularly interested in supporting
partially-specified motion directives e.g. only specifying the
upper-body joint trajectories, or just the torso velocity, or
both. It is expected that the controller “fills in the blanks” for
joints that are not specified by a directive, e.g. details of the
lower-body joints. Such a controller can support directives
derived from various input modalities. For example, fully-
specified directives specifying all joints can be derived from
MoCap data, while joystick commands regarding the root
velocity and arm movements correspond to partial directives.

More formally, a motion is a sequence of poses q1:H for
a humanoid with J joints over H time steps. Each pose
is represented by a tuple qi = (θi, θ̇i, vi, wi, bi), where
θi ∈ RJ denotes the joint angles, θ̇i ∈ RJ denotes the joint
angular velocities, vi ∈ R2 denotes the root planar linear
velocities, wi ∈ R denotes the turn rate for the humanoid,
and bi ∈ R3 denotes the Euler base orientation in the x-axis,
y-axis, and the height of the base from the ground plane.
Motion directives are used to specify constraints on a desired
motion to be generated. Specifically, a motion directive d
is defined as a masked motion sequence represented by
d = (q̂1:H , I1:H), where q̂1:H is a masked motion and I1:H
is a sequence of binary masks such that Ii indicates which
dimensions of pose qi are selected as motion constraints. We
follow the convention of setting the masked dimensions of q̂
to zero. Note that while the definition of a directive allows for
arbitrary sets of state variables to be masked, in practice, we
focus training and evaluation on masking patterns relevant to
the multiple input modalities the controller needs to support
as described in Section IV.

The Masked Humanoid Controller (MHC) is a controller π
that at each time step t takes an input containing the current

humanoid state st = (θt, θ̇t, ωt) and a target motion directive
d, where θt ∈ RJ and θ̇t ∈ RJ are the joint positions and
velocities, and ωt is the orientation in quaternion form. The
output of the MHC is an action at = π(st, d), which in
our work corresponds to PD setpoints for all robot motors.
The objective of the MHC is to select actions which aligns
the future humanoid motion with the commanded directive,
while maintaining stability and robustness to disturbances.

IV. MASKED HUMANOID CONTROLLER

Due to the lack of low-level supervisory information, we
train the MHC via reinforcement learning (RL) in simulation
before transferring it to the real world. The MHC is trained
using the PPO algorithm [29] in a MuJoCo physics engine
simulation with a Digit V3 humanoid model. Below we detail
our training approach which involves several key compo-
nents: motion dataset generation, MHC network architecture,
a curriculum of training episodes, domain randomization for
sim-to-real transfer, and our mask aligned reward function.

A. Motion Data Generation

We create a diverse set of reference motions for training
the MHC using a combined dataset consisting of human
motion capture (MoCap) datasets (AMASS [27], Reallu-
sion [30]), and video demonstrations. To help bridge the
human to Digit embodiment gap, we employ an Inverse
Kinematics (IK) based retargeting procedure to map the
dataset trajectories to Digit’s kinematic model.

For each frame in the dataset, we solve an IK problem for
the generalized position vector of digit q = (θ, b) formulated
as a nonlinear program (NLP). We use the IK module in
Drake [31] to set up the costs and constraints associated with
the NLP, and SNOPT [32] as the underlying solver. Critical
kinematic feasibility requirements such as locking the stance
foot to the ground and respecting the closed kinematic chain
topology of Digit’s legs are expressed as constraints in task
space. Upper body motion targets that serve more of a
stylistic purpose such as torso pose, and hand positions are
expressed using costs to aid in convergence. Any frames that
the IK optimization did not generate a feasible solution for
are simply dropped. Linear interpolation is applied to the
sequence of states qi and their timestamps ti to produce the
final time-parameterized trajectory q1:H used for training.

We note that there are some discrepancies in retargeted
motions when MoCap trajectories are not kinematically
feasible for the Digit robot. This is due to Digit’s one-
dimensional rotational joints (limited to ¡360° rotation) vs
MoCap’s 3D spherical joint models. The retargeting process
uses inverse kinematics (IK) with cost-based optimization to
find the best approximate solution within these constraints.

B. Network Architecture

The MHC model is a Long Short-Term Memory
(LSTM) [33] recurrent neural network which takes as input
the current humanoid state st and the next step of the current
directive di = (q̂i, Ii). The MHC first processes the directive
with a single-layer feed-forward encoder to produce a 160



dimensional directive embedding. This is concatenated with
st and fed into an LSTM block configured with two 64-
unit recurrent layers to capture temporal information. A final
linear decoding layer outputs an offset for each actuated
joint. The MHC action at is computed by adding this offset
to the actuated joint values in q̂i, which yields the next
PD setpoints. Note that for the masked joints in di, the
corresponding values in q̂i are zero and the offset corresponds
to the actual PD setpoint. In our work, we use the Digit V3
humanoid, which has 20 actuated joints. The MHC is run
at 50Hz to compute PD setpoints which are sent to a PD
controller running at 2kHz.

C. Training Episode Generation

Each episode is initialized with the robot in a standing
position. Next a random command window length w is
generated and a random directive d is drawn from a dis-
tribution defined by the curriculum stage (see below). The
MHC then cycles through d until reaching w steps. This
sampling of a w and d continues until the robot falls or
reaching the maximum episode length e, which depends
on the curriculum stage. By switching between multiple
random directives during an episode, the MHC can learn
to smoothly transition between different types of motions.
In addition, to encourage robustness, during the execution of
each episode we apply perturbations on the torso according
to a distribution that depends on the curriculum stage.

D. Curriculum Stages

We employ a three-stage curriculum that progressively
focuses training on locomotion, robustness to perturbations,
and whole-body motion tracking. This enables gradual ac-
quisition of complex skills while ensuring stable learning.

Stage 1 - Locomotion: The objective of this stage is
to focus learning on developing basic balance and locomo-
tion control, which is a core capability required for more
complex behaviors. For this purpose, the episodes involve
only randomized locomotion directives, which are partial
directives that mask all variables except for those specifying
root motion (vi, wi, bi). Instantaneous torso perturbations
(80-800N) are also introduced, each affecting a single policy
step with a 1% probability. Training lasts for 300 policy steps
(6 seconds) with a command window w ∈ [40, 100].

Stage 2 - Stability: Building upon Stage 1, we focus on
enhancing the controller’s stability during locomotion. In this
stage continuous torso perturbations (20-150N) are applied
over windows of 20-50 policy steps. In order to facilitate
recovery, we increase episode length to 800 policy steps (16
seconds) and the command window length to w ∈ [100, 400].

Stage 3 - Whole-Body Directives: In this stage, we
train the MHC to follow both fully and partially specified
directives. Fully-specified directives provide the complete
motion reference without any masking, requiring the MHC
to perform whole-body imitation. Partially specified direc-
tives may take three forms, which correspond to key input
modalities: 1) providing only locomotion commands without
any upper or lower-body motion specification, corresponding

to a joystick input modality, 2) specifying only the upper-
body motion while standing in place, upper body imitation
from VR or video modalities, or 3) specifying upper-body
target motions with locomotion commands, corresponding
to a richer VR controller with a locomotion interface. The
MHC learns to generate coherent whole-body motions while
satisfying the constraints specified by the unmasked compo-
nents of the directive. Throughout this stage, we maintain the
episode length at 800 policy steps and the command window
length w within the range [100, 400].

E. Domain Randomization

To facilitate transfer from simulation to the real robot,
we employ dynamics randomization throughout all stages of
the curriculum. This involves randomizing various physical
parameters of the simulated environment, such as joint damp-
ing, link masses, center of mass positions, encoder noise,
ground friction. By exposing the MHC to a wide range of
dynamics during training, we aim to learn a policy that can
generalize to the dynamics of the real robot without requiring
precise system identification or extensive real-world fine-
tuning. The randomization ranges are carefully chosen to
strike a balance between creating sufficiently diverse training
scenarios and maintaining realistic behavior of the simulated
robot. We use the same randomization ranges as prior work
on Digit locomotion training [24].

F. Reward Design

Our reward function must encourage stability and robust-
ness during locomotion and standing as well as tracking
of unmasked joints in the current directive. For locomotion
and standing stability we build upon the reward function
used to train a recent state-of-the-art humanoid standing and
walking controller [24]. That reward function includes three
components: 1) Task Reward rtask to encourage command
following for locomotion directives, 2) Style Reward rstyle to
encourage natural body postures for standing and walking,
3) Regularization Reward rreg to encourage smooth joint
motion and low torques. We refer the reader to the original
paper for details of these components. We build on these
components and add a Tracking Reward rtrack.

rtrack = exp
(
−1.5 · ||(θ − θ̂i) · Ii||

)
,

where θ is the current joint values and θ̂i is the target joint
for that step along with the corresponding directive mask Ii.

The overall reward function depends on whether the di-
rective masks the lower-body joints or not. When the lower-
body is masked, e.g. for pure locomotion commands or
locomotion combined with upper body tracking, the reward
function is r = rtask + rstyle + rreg + rtrack. However,
when the lower-body joints are not masked in the directive,
the reward function removes the style reward and becomes
r = rtask + rreg + rtrack. This is done because the motion
preferences of the style reward may conflict with the specific
lower-body target directives that should be tracked.



TABLE I: Predefined ranges for components of locomotion directives.
Velocities (vix, viy) and turn rate (wi) are set to zero when the standing
mask bit (Iis) is set to 1, indicating a standing directive.

Component Range
x velocity (vix) [-0.5, 2.0]m/s
y velocity (viy) [-0.5, 0.5]m/s
turn rate (wi) [-0.5, 0.5]radians/s
torso x orientation (bix) [-0.314, 0.314]radians
torso y orientation (biy) [-0.314, 0.314]radians
torso height (bih) [0.5, 1.0]m
Standing mask bit (Iis) {0, 1}

V. EXPERIMENTAL RESULTS

We present our evaluation protocol and simulation exper-
iments to to assess the MHC’s performance. We compare
the MHC with baseline approaches, analyze the impact of
varying training sets, and learning curriculum. Additionally,
we present qualitative and quantitative results of sim-to-real
transfer to the Digit V3 robot.

A. Motion Directive Dataset

We used IK retargetting to generate 75 diverse kinematic
motion trajectories. We selected this set of motions based
on considering diversity, fit to the robot morphology, and
avoiding overly aggressive motions such as jumping, kicking,
and high velocity swinging of limbs. In order to study the
generalization capabilities of our approach, we test MHC
models on motions outside of their training sets, dividing
the data into three sets, each containing a mix of motions
from the original motion sources.

• setA [20 motions]: Amass Boxing (5), Amass misc (9),
Reallusion (2), optimized (2), video (2)

• setB [20 motions]: Amass Boxing (6), Amass misc (6),
Reallusion (5), optimized (3)

• setC [35 motions]: Amass Boxing (19), Amass misc
(12), Reallusion (1), optimized (3)

While each set contains simple upper-body movements
(such as waving), the general trend is an increasing level
of difficulty as judged by the authors. We note that setC
has a number of the most difficult motions, involving highly
dynamic motion, such as tennis smashes and difficult boxing
moves requiring precise and dynamic footwork combined
with upper body motions. The feasibility of these more
difficult motions is not obvious for our realistic Digit model.

B. Experimental Setup and Metrics

We evaluate the MHC on different input modalities in-
cluding partial/whole-body mimicry, walking, and standing
with perturbations. We use the full re-targeted dataset for
whole-body mimicry and mask out the lower body targets for
partial-body mimicry. Each episode for full/partial mimicry
experiments command the complete motion directive once.

For pure walking experiments the directives are sampled
from a predefined range as specified in Table I. For each
walking experiment episodes last for 10s and all non-
locomotion directive components are masked out. Finally,
for standing perturbation testing we follow prior work [24]
and provide an input directive of standing and apply varying

TABLE II: Comparison of baseline models on various metrics, including
failure rate, mean per-joint position error (EMPJPE), and root mean squared
error (Root∆). The MHC model achieves the lowest failure rate and error
metrics compared to the Locomotion+Offsets and Offset Blind models.
Root∆ for Real not computed due to missing global position data per frame.

Model Fail % EMPJPE (in m) Root∆ (in m)
Offset Blind 49.213 0.156 0.168
Locomotion+Offset 4.800 0.227 0.203
MHC 0.450 0.098 0.141

Real World Results 5.0 0.117 -

TABLE III: Locomotion Performance Comparison of MHC models with
SOTA Stand and Walk(SaW) Controller:

Model
Walking Root∆(in m) Standing Root∆(in m)
+1x m/s +0.5y m/s 50N 100N

MHC 0.413 0.343 0.256 0.311

SaW (SOTA) 0.803 0.388 0.109 0.452

forces at the base of the torso for a window of length of 25
steps to measure the root position drift. Below we describe
the metrics used throughout our evaluations.

• Mean per joint positional error (EMPJPE): Mean posi-
tional error for end effectors (hands, elbows, knees, feet)
is calculated as the L2 norm of the current Euler posi-
tion relative to the torso, compared to values from the
directive. For partial directives, the error is computed
only for unmasked joints.

• Root Drift (Root∆): The mean of drift in root position
during an episode from its commanded position when
following partially or fully-specified directives. Com-
puted as an L2 norm of the current root position against
expected root position in the previous directive step.

• Failure Rate (Fail %): Percentage of episodes that result
in failure (i.e. falling).

C. Comparison to Baselines

Since no prior approaches handle masked directive in-
puts like the MHC, we compare our model with different
baselines for locomotion and mimicry. For locomotion, we
compare against a state-of-the-art standing and walking
controller[24]. We also develop two natural baselines to com-
pare against for locomotion + upper-body mimicry: 1)Offset
Blind. This model focuses on solely tracking locomotion
components of input directives and does not receive upper-
body IK offsets as model input. Rather it feeds upper-body
offsets from the directive straight to the PD controllers
without considering them in its locomotion planning. 2)
Locomotion+Offset. This model is the same as Offset Blind,
except that it receives upper-body offsets in its input. This
allows it to adjust its locomotion control based on the
anticipated upper body motions.

For this comparison experiment we train the MHC and
all baselines on datset SetA. The results of our standing
and walking evaluation in comparsions to the SOTA [24]
are provided in Table III. We give results for the root drift
when given walking commands (+1m/s x and +0.5m/s y)
and for standing under different force perturbations (50N and



TABLE IV: Performance Comparison of MHC models on partial and whole-
body directives computed on different datasets (setA, setB, setC)

Metric
Mimicry-EMPJPE(in m) Mimicry-Root∆(in m)
setA setB setC setA setB setC

MHCA 0.098 0.572 0.818 0.141 0.551 0.436

MHCAB 0.092 0.549 0.778 0.091 0.435 0.413

MHCABC 0.096 0.494 0.745 0.098 0.373 0.398

100N). The MHC demonstrates competitive performance in
both walking and standing tasks, highlighting that MHC is
on par with SOTA walking and standing capabilities.

Table II gives results comparing the MHC to the mimicry
baselines. The MHC outperforms the baselines across all
metrics. Most significantly it achieves a failure rate of less
than 1% which is significantly lower than the baselines.
Interestingly, we see that Locomotion+Offset achieves a
significantly lower failure rate than Offset Blind, showing
the utility of explicitly training the the controller to prepare
for upcoming target motions provided in its input.

D. Evaluation of Generalization Performance

We train a different MHC on three varying sets of motions
to investigate its generalization and influence of different
training sets. Here MHCA is trained on setA, MHCAB on
setA & setB, and MHCABC on all three sets. We then evaluate
these models on each dataset and report the performances in
Table IV. Our results demonstrate two key findings:

Generalizability: All three models consistently perform
well on the datasets they were trained on, regardless of the
dataset size. MHCA excels on setA, MHCAB shows strong
performance on both setA and setB, and MHCABC performs
well across all three sets. We also see that MHCA and
MHCAB yield strong performance on the datasets they were
not trained on. This indicates the generalization capability of
the MHC to motions outside of its direct training experience.

Improved Performance with Larger Datasets: We ob-
serve a trend of increasing performance as the training
dataset size grows. Notably, models trained on larger datasets
often outperform those trained on smaller subsets, even
when evaluated on the smaller sets. For instance, MHCAB
shows better performance on setA compared to MHCA, and
MHCABC achieves the best results on setB and setC. This is
good evidence that with additional compute the MHC has
the potential to continue improving as additional motions
sources are incorporated into training.

E. Curriculum Results

We also train and evaluate MHCNoCurr that is trained
without any curriculum on the full set of directives (lo-
comotion, partial and whole-body). We trained MHCNoCurr

until the training loss plateaued for a long period of time,
providing substantially more training time than the MHC.
In Table V we compare MHCNoCurr’s performance against
MHC in perturbed standing, walking, and mimicry. We see
that MHC clearly outperforms MHCNoCurr on the tasks of
walking and mimicry, which shows the effectiveness of our
curriculum design. It is interesting to note that MHCNoCurr

Fig. 2: Real-world demonstrations of our approach. A) Locomotion Direc-
tives using joystick commands. B) Fully-specified directive for a boxing jab;
showing whole-body torso motion and foot coordination. C) Handcrafted
sequence of masked directives combining upper body motion trajectory and
lower body joystick commands; showing the ability to move to a location,
pick up a box, move while holding it, and place it at a target location.

TABLE V: Performance metrics comparing a model trained with curriculum
(MHC) against a model trained without curriculum (MHCNoCurr) on the
tasks of standing, walking and mimicry (averaged for both partial and whole-
body directives from motions in dataset setA).

Metric MHC MHCNoCurr

Standing (50 N) Root∆(in m) 0.256 0.189
(100 N) Root∆(in m) 0.311 0.234

Walking (+1x m/s) Root∆(in m) 0.413 1.346
(+0.5y m/s) Root∆(in m) 0.343 0.937

EMPJPE(in m) 0.098 0.149
Mimicry Root∆(in m) 0.141 0.327

Fail % 0.450 4.875

slightly outperforms the MHC with respect to standing
against perturbation. This appears to come with the trade-
off of not aligning itself to the command directive as well
as the MHC, particularly in the lower body.

F. Sim-to-Real Results

We conducted real-world demonstrations of the MHC
using the Digit V3 humanoid robot. Figure 2 shows tri-
als including box locomanipulation, which involved the
input modality of locomotion and upper-body end-effector
tracking. Our supplementary video illustrates a number of
successful examples and some failures. For a quantitative
evaluation we tested the 20 motions in setA on the real
robot, performing 3 repetitions of each motion. The results
are given in Table II. While the failure rate (5%) and joint
position error are higher than observed in simulation, these
results indicate our approach is able to achieve highly non-
trivial sim-to-real transfer.

VI. FUTURE WORK

This work motivates a number of important research
directions: 1) Addressing the remaining sim-to-real gaps,
especially for motions with wide foot placements or extended
single-foot balancing stances. Incorporating real-world data
into the sim-to-real process is likely to play an important
role. 2) Continuing to increase the number and types of
motions used for MHC training. Currently, for Digit V3,
the bottleneck is our reliance on the MuJoCo simulator,
compared to other higher throughput simulators such as Isaac
Sim, which do not yet support the Digit V3 model due to
modeling complexities. 3) Increasing the variety of masking
patterns used for training to further enhance versatility. 4)



Handling inconsistent and/or impossible input directives (e.g.
root velocity is inconsistent with other joint components),
which are currently not part of training.
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